DYNAMICAL CALCULATION OF HYPERON POLARIZATION

Pierre CHIAPPETTA

Centre de Physique Théorique CNRS - Luminy, Case 907 F-13288, MARSEILLE CEDEX 09 (FRANCE)

Abstract

We compute polarizations for inclusively produced hyperons in pN scattering at high energy by considering interferences between different resonances. Our predictions agree with experiment at small transverse momentum p_{\perp} and large X_F but fail to explain the data at large p_{\perp} .

Introduction

Since the pionnering Fermilab experiment ^[1] in 1976 where a large transverse polarization has been observed in the inclusive reaction $pN \rightarrow \Lambda X$ all measurements^[2] have confirmed a negative and large Λ polarization which at fixed X_F increases with p_{\perp} up to 1 GeV and becomes flat in the high p_{\perp} region. For Σ production the polarization is positive whereas there is no polarization for inclusively produced protons. Using the optical theorem the transvese polarization for hyperon B reads:

$$P_{B} = \frac{\sigma \hat{\tau} - \sigma \downarrow}{\sigma \hat{\tau} + \sigma \downarrow} = \frac{Im F_{B}^{+-}}{F_{B}^{++}}$$
(1)

where

$$F_{B}^{\lambda\lambda'} = \sum_{\lambda_{p},\lambda_{N}} \operatorname{disc}_{M}^{2} \langle p(\lambda_{p}) N(\lambda_{N}) \overline{\Lambda}(\lambda) | p(\lambda_{p}) N(\lambda_{N}) \overline{\Lambda}(\lambda') \rangle$$
(2)

 λ_p (resp. λ_N) being the proton (resp. nucleon) helicity. Equation (1) shows that one needs both an helicity flip and a phase to get a non zero polarization.

The phenomenological models ^{3),4)} which explain the features of the data are semiclassical and not based on a dynamical calculation from a fundamental theory. It has been suggested⁵⁾ that polarization arises from strange quark scattering off the color field generated by quarks and gluons inside the target. Unfortunately for reasonable values of color field intensity it leads to a polarization of roughly 1%.

I will mainly discuss the possibility of generating a phase by two different hadronic amplitudes⁶). I will describe a dynamical calculation⁷) of hyperon polarization based on interferences between different resonances Y and Y* producing the hyperon B.

Description of the model and results

The amplitude (2) reads

$$F_{B}^{\lambda\lambda'} = \int ds_2 R(s_2) \operatorname{disc}_{M^2} \langle pN\overline{Y}(\lambda)| pN\overline{Y}^*(\lambda') \rangle P_Y(s_2) P_{Y^*}(s_2)$$

$$A(Y \to B(\lambda)\pi) A(Y^* \to B(\lambda')\pi)$$
(3)

where $R(s_2)$ is the phase space factor for the decay $Y^{(*)} \rightarrow B\pi$, P_Y (resp. P_{Y^*}) is the propagator of Y (resp. Y*) resonance and A is the decay amplitude. The imaginary part is obtained from the different structure of the two propagators (for Λ polarization only a virtual Σ can decay into $\Lambda\pi$).

We have now to produce a non zero helicity flip amplitude :

$$\mathcal{A} = \operatorname{disc}_{M^2} \langle pN\overline{Y} (+) \mid pN \ \overline{Y}^* (-) \rangle$$
(4)

We will consider two distinct kinematical regions : the low p_{\perp} one $(p_{\perp} \leq 1 \text{ GeV} \text{ and } X_F \geq .6)$ and the large p_{\perp} one $(p_{\perp} > 1 \text{ GeV})$. In the first region the theoretical scheme we will use ⁷) to compute \mathcal{A} is the triple Regge mechanism. For Λ production the relevant trajectories are the K* and K** and the residues are extracted from phenomenology⁸). The total Λ polarization is obtained after addition of the contribution due to Σ° decaying into $\Lambda\gamma$. As shown in figure 1 we get ⁷) $p_{\Lambda} \cong -10\%$ in agreement with low p_{\perp}

experimental data. Moreover we obtain ⁷) for the ratio $R = \sigma_{\Sigma^{\circ}} / (\sigma_{\Sigma^{\circ}} + \sigma_{\Lambda})$ the result . 27 in perfect agreement with the experimental value $R = .28 \pm .06$. This mechanism predicts that protons are unpolarized since the resonances N and Δ cannot interfere as they have different isospin values.

Fig.1 Theoretical predictions for Λ , Σ^+ , Σ^- polarizations for 0.45 GeV < $p_{\perp} \leq 0.55$ GeV, compared to experimental data.

Since the Regge description cannot be applied to large p_{\perp} values we have ⁹) to find another mechanism to produce the spin flip amplitude. It will be provided by perturbative QCD. Assuming factorization, we get :

$$F_{B}^{++} = \int dx_{p} dx_{N} dx_{c}^{-1} \frac{\hat{s}}{\pi} \delta(\hat{s} + \hat{t} + \hat{u}) \sum_{a,b,c} F_{a}^{p} (x_{p}) F_{b}^{N} (x_{N})$$
$$D_{c}^{Y}(x_{c}) \frac{d\hat{\sigma}}{dt}(ab \rightarrow cX)$$
(5)

where $F_a^H(x)$ (resp. D_a^H) is the structure function (resp. fragmentation function) of parton a and $\frac{d\hat{\sigma}}{dt}$ is the partonic cross section.

292

Similarly :

$$F_{Y*Y}^{-+} = \int dx_{p} dx_{N} dx_{c}^{-1} \frac{\hat{s}}{\pi} \delta(\hat{s}+\hat{t}+\hat{u}) \sum_{a,b,c} F_{a}^{p} (xp) F_{b}^{N} (x_{N})$$

$$\sum_{h,h'} D_{c c, hh'}^{Y*Y,-+} a_{hh'} \qquad (6)$$

where $D_c c'$, hh' is the amplitude depicted in fig.2 that we evaluate using SU(6) wavefunctions and $a_{hh'}$ the partonic spin flip cross section.

Fig.2

The $q\bar{q}$ YY' amplitude. h,h' (resp. H,H') are helicities of quarks (resp. Y,Y*) whereas c and c' are the quark flavor indices.

In QCD since the gluon coupling to quarks preserves helicity for massless quarks the naive calculation would predict¹⁰) that a_{+} is proportional to the quark mass. It has been shown¹¹) by applying angular momentum conservation and Bjorken sum rule that the mass parameter has to be identified with the mass of the polarized hadron. Therefore, we will replace in a_{+} m_q by M_B. The largest contribution arises from $gq \rightarrow gq$ scattering. We get at the partonic level :

$$\hat{p}_{B} = \frac{0.1}{32} \frac{M_{B} p_{\perp} \hat{s}}{\hat{t} \hat{u}} \frac{1}{\left(\frac{9}{4} \frac{\hat{u}^{2} + \hat{s}^{2}}{\hat{t}^{2}} - \frac{\hat{u}^{2} + \hat{s}^{2}}{\hat{u} \hat{s}}\right)}$$
(7)

A rough estimate of the magnitude of \hat{p}_B in the central region gives $\hat{p}_B \sim 10^{-2}$ at $p_{\perp} \sim 1$ GeV. After inclusion of fragmentation and decay of resonances we get a smaller result.

Our analysis shows that the resonance interference model for hyperon polarization in high energy inclusive pN scattering which was successful in explaining low p_{\perp} data fails to reproduce the data in the large p_{\perp} region.

References

- [1] G. BUNCE et al, Phys. Rev. Lett. 36 (1976)113
- K. HELLER, Proc. 6th Int. Symp. on High Energy Spin Physics (J. Soffer ed.)
 J. Phys. 46 (1985) C2-121.
- [3] T.A. DEGRAND and H.I. MIETTINEN Phys. Rev. D24 (1981) 2419.
- [4] B. ANDERSON, G. GUSTAFSON and G. INGELMAN. Phys. Lett. 85B (1979) 417.
- [5] J. SWED, Phys. Lett. 105B (1981)403.
 J. GAGO, R. VILELA MENDES and P. VAZ, Phys. Lett. 183 B (1987) 357.
- [6] G. PREPARATA, Proc. High. Energy Physics with polarized beams and polarized targets (C. Joseph and J. Soffer eds) Birkhauser, Basel 1981, p. 121.
- [7] P. CEA, P. CHIAPPETTA, J.Ph. GUILLET and G. NARDULLI, Phys. Lett. 193 B (1987) 361.
- [8] A.C. IRVING and R.P. WORDEN, Phys. Rep. 34 (1979) 117.
- [9] P. CEA, P. CHIAPPETTA and G. NARDULLI, Preprint CPT-88/P. 2118, May 1988. (to appear in Phys. Lett. B).
- [10] G.L. KANE, J. PUMPLIN and W. REPKO, Phys. Rev. Lett. 41 (1978)1689.
- [11] A.V. EFREMOV and O.V. TERYAEV, Sov. J. Nucl. Phys. 36 (1982)140.